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SOME SINGULAR MODULI FOR Q(V3) 

HARVEY COHN AND JESSE DEUTSCH 

ABSTRACT. In an earlier paper in this journal, the authors derived the equa- 
tions which transform the Hilbert modular function field for Q(V3) when 
the arguments are multiplied by (1 + v'3, 1 - x-) . These equations define a 
complex V2, but we concentrate on special diagonal curves on which the val- 
ues of some of the singular moduli can be evaluated numerically by using the 
"PSOS" algorithm. In this way the ring class fields can be evaluated for the 
forms Q2 + 2tA q2, where A = 1, 2, 3, 6 and t > 0. These last results are 
based partly on conjectures supported here by numerical evidence. 

1. INTRODUCTION 

The historical motivation of modular functions in several variables was to 
generalize some powerful results in one variable to the effect that singular mod- 
uli determine class fields. This thesis of Hilbert led to Hecke [9], and it was 
not easily realized for numerical results because of the escalated difficulties of 
computation. These difficulties are partly due to the fact that Fourier series are 
now doubly infinite, but mostly due to the paucity of modular equations (see 
[4, 6]). The evaluation of numerical constants is more precarious, but the 
"PSOS" routines [1] are remarkably effective in identifying algebraic numbers. 

The earlier papers ([4, 5]) treated some special cases for modular functions 
over the field Q(V2). They led to theorems on the representation of primes in 
terms of integral quadratic forms in this field, 

(1.1) 7r = 2 + 2t,12, or X = ,2 + (2 + V)2t,2 

By using modular equations in [6], we now do the same for Q(v"_3), e.g., with 
the forms 

(1.2) 7r = 2+A2tA2, A= 1, 2, 3, 6. 

The definitions will be reviewed at the appropriate point in this paper, but 
to summarize, the theory of Weber, which worked to perfection for the case of 
the Klein modular group, is seriously limited when Hecke's thesis is applied. In 
fact, we restrict ourselves to forms with a normal splitting field (see ?8), thus 
avoiding a good deal of the complexity. Indeed, the theory is still conjectural, 
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but it is hoped that this paper will add to the numerical evidence showing an 
analogue. 

2. REVIEW OF EQUATIONS AND NOTATIONS 

The principal equations of [6] are reproduced here for convenience. We are 
dealing with the Hilbert modular group PGL2j(Z[Vi3]) as it acts simultaneously 
on two products of half-planes H+ and H- as follows: 

{H+ when az' > 0 
(2.1) Z = 

(z,z'), ?z >0O and ZcElH when Sz' <0? 

The algebraic numbers ,B E Q(v) are defined, with conjugates, by 

(2.2a) a = a? vb3, /B'=a -bv (a, b E Q), 

(2.2b) Z + Al = (Z + Al I z + f ), AiZ = (AiZ) A'Z ). 
The latter assumes that ,B > 0. Furthermore, if /B' > 0, then the relation 
Z E HA is preserved by AZ, otherwise that relation is reversed. In particular, 
note 

(2.2c) ev=2?+V3, T= 1+V3, 

where e' > 0, z' < 0. Indeed, Ne 1 and NT= -2. Also T2 = 2e, or 
equivalently, = = z/v'2. We also write 1/Z = (1/z, 1/z'). The modular 
group is then generated (see [8]) by 

(2.2d) Z = Z + 1, Z=Z+v13, Z=-1/Z, Z =,CZ. 

For the products of half-planes, we further impose the symmetry (which 
augments the group PGLj+(Z[v'i3]) by index two) 

(2.3a) H+: z- z', z'Z, 

(2.3b) H-: z -z', z' _ -z. 

We have previously defined (see [6]) field-generating modular functions (chosen 
for their "simple poles"): 

(2.4a) U = U(Z), V V(Z) for Z E H+, 

(2.4b) X = X(Z), Y =Y(Z) for Z E H-. 

We also need 

(2.4c) W(Z) = U(Z) V(Z), Z E H+, 

where, in terms of modular forms of indicated dimension, 

(2.4d) U = H +2/H , V H2H 3/H , W-H+3/H6, 

(2.4e) X= H2IH/H4, Y = Hj-H4 /H6 . 

Now we move to the transformation equations themselves (see [6]): 

(-X3 - 144X2 - 5184X)Y2 + (-3456X2 - 248832X)Y - 2985984X 

(2.5a) I ((2X2 + 288X + 10368)Y2 I (-207X2 - 9504X)Y 62208X)U 

+ ((-X2 + 78X)Y - 432X)U2 + XU3 - 0, 
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(-U3 + 864U2 _ 186624U)V2 + (3456U2 - 1492992U)V - 2985984U 

+ ((-87U2 + 2592U)V2 + (-414U2 - 20736U)V - 124416U)X 
(2.5b) + ((U2 - 72U)V2 + (4U2 - 432U)V - 1728U)X2 

+ ((-U + 32)V2 - 6UV - 8U)X3 = 0, 

(16X2 + 1152X) Y + 27648X + (-20XY2 + (20X2 + 96X) Y + 13824X) V 

(2.5c) + (4Y3 + (-12X + 96)y2 + (8X2 - 160X)Y + 2304X)V2 
+ (Y3 + (-2X + 24)y2 + (X2 - 24X)Y + 128X)V3 = 0, 

(U2 - 464U + 13824) V3 + (6U2 - 4320U + 55296) V2 

(2.5d) + (8U2 - 13824U)V - 13824U 

? ((71U + 1728) V3 + (360U + 6912)V2 + 432UV)Y 
+ ((-U + 72)V3 + (-2U + 288)V2)Y2 + (V3 + 4V2)Y3 = 0 

Thus, given U(Z) and V(Z), the equations (2.5a-d) define X(Z*) and 
Y(Z*), and given X(Z) and Y(Z), they define U(Z*) and V(Z*), where 
Z* takes the three values 

(2.6) Z Zz, Z/T, (Z + 1)/T. 

(This is strongly analogous to the classical case where the modular equation of 
order two for j(z) defines j(2z), j(z/2), and j((z + 1)/2).) Note that, if 
Z e H+, then Z* E H-, and conversely. The four equations in U, V, X, Y 
form a two-dimensional variety with diagonal curves lying on it (as we see next). 

3. SOME DIAGONAL IDENTITIES FOR MODULAR FORMS 

We next consider the modular functions as confined to diagonals of the form 

(3. 1a) z/z' = ?,6', t E Z. 

Here, of course (by equations (2.2d)), there are only four cases to consider 
under modular equivalence. They arise from the ? and the choice of t odd 
or even. The set of Z satisfying (3.1 a) are invariant under the transformation 

(3. lb) T[Z] = TZ 

(recall that E = z/z'). Therefore, the diagonals can be partitioned into two 
subsets equivalent to 

(3. 1c) D: (z, -z), (zT, -zT') 

or to 

(3.1d) D* (z, z), (ZT, ZT'). 

Each is preserved under modular equivalence by the transformation T, and 
the iteration of T amounts to z -* 2z, since T2 = 2e. Each diagonal set will 
be seen to correspond to a curve on the projective manifold of the modular 
equations (?5). 
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These diagonal classes lead to the new functions on the upper-half z-plane, 

(3.2a) D: x(z) = X(z, -z), y(z) = Y(z, -z), 

(3.2b) D: U(Z) = U(ZT, -ZT'), V(Z) = V(ZT, -ZT'). 

Here, we have the Hecke modular relation for f (z) = x(z) or y(z): 

(3.2c) f(z + v?) = f(z), f (- /z) = f(z). 

There is also a second set requiring the use of W (= UV), 

(3.3a) D*: u*(Z) = U(Z, Z), V*(Z) = V(Z, Z), W*(Z) = W(Z, Z), 

(3.3b) D * : X(Z) = X(ZT, ZT'), Y*(Z) = Y(ZT, ZT'). 

It is now seen that formally f(z) = u*(v), v*(z), or w*(z) satisfies the Klein 
modular relation 

(3.3c) f(z+ 1) = f(z), f(-1/z) = f(z). 

(We shall see that only w*(z) is finite, by (3.7c) below.) 
By this same procedure, we define modular forms on the diagonals, valid on 

the upper-half z-plane. Analogously with (3.2a-c), 

(3.4a) km(z) = Hm (z, -z), km(z) = Hm+(ZT, -ZT'), 

(3.4b) km(Z + ) = km(Z) km(-1/z) = km(z)z2m. 

Likewise, analogously with (3.3a-c), 

(3.5a) hm (z) = Hm (Z, Z), h* h(z) = Hm (ZT ZT ), 

(3.5b) hm(Z + 1) = hm(Z), hm(-1/z) = hm(z)/z2m. 

This diagonal reduction is applied to the Hm, of (2.4d,e) and as well to two 
additional functions required here, 

(3.6) H8- = H2- _ H7H6, H+ = H2 4HH43. 

To reduce to one complex dimension, we eliminate one degree of freedom 
in the generators (2.4a,b) of the modular function fields. This is a result of the 
following identities in z over D: 

(3.7a) D: x(z) = y(z), u(z) = 4v2(z), 

or, equivalently, 

(3.7b) D: k8(z)=O, kj>(z) = O. 

Likewise, over D*: 

(3.7c) D*: u*(z) =oo, y*(z) = oo, 

or, equivalently, 

(3.7d) D*: h4(z) = O h*(z) =O. 
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These conjectures, particularly (3.7a), resulted from numerical computations of 
?6 (below). 

4. USE OF FOURIER SERIES 

Each of the identities in (3.7b) and (3.7d) can be proved by verifying just 
that a finite number of the leading terms of each Fourier series vanish. 

In the earlier work [6] (also see [13]), the various modular forms Ht? were 
expanded into Fourier series (over Z) in 

(4.1a) Q = exp7i(z + z'), R = expni(z - z')/, 

so we can rewrite 

(4.1b) H,-(z, z') = H,[Q, R] = ZCa,bQb Ra 

with indices delimited by 

(4.1c) ai < bv3 for H+, 

(4.1d) JbI < a/V3 for H7 

The coefficients Ca b appear in tables in [6]. We define the degree of accuracy 
of a section of the sum (4. lb) as the maximum value of b for Hm+ and of a 
for Hm. 

For purposes of diagonalization, we use the new variables (observe difference 
in lower-case lettering compared with [6]): 

(4.2a) q = exp27iz, r = exp2niz/v3. 

Here, q is the parameter at oc for z -+ z + 1, and r is for z -+ z + v'3. We 
verify that, referring to (3.4a) and (3.5a), 

(4.2b) D: km(z) = H;[l, r], km*(z) = H+[r3 , r], 

(4.2c) D*: hm(z) = Hm+[q , 1] , h* (z) = Hm+[q , q]. 

Our main purpose for now is to verify the identities in (3.7b,d). Actually, 
h4(z) = 0 and h*(z) = 0 are classic (see [8]), and the same methods may be 
applied to show the identities k8(z) = 0 and k* (z) = 0. To summarize this 
technique, note that k8(z) is a cusp form of weight 16 for the Hecke modular 
group (see (3.4b)). It can also be verified that 

(4.3) K12(z) = k*2(z)k*2(z/2)k*2((z + 1)/2) 
is a cusp form of weight 72. By classical theorems (see [8]) it follows that if a 
cusp form of weight 2m for the Hecke modular group vanishes at oo of order 
rn for n > m/3, then it vanishes identically. (We note that K12(z) has twice 
the order of k 2(z) . Of course, if K12 vanishes identically, so does each of the 
factors as images under the Hecke modular group.) 

Therefore, to complete the proofs of identities (3.7b,d), we have only to show 
that each of the following Fourier series, 

(4.4a) k8(z) = HZ[1, r]2 - HJ[1, r]H [1, r] 

and 

(4.4b) kl2(z) = H6 [r3, r]2 - 4H4 [r3, r]3, 
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vanishes to higher order than r6. This requirement is easily satisfied if the 
functions H,m are calculated to a degree of accuracy exceeding 6 in (4.4a) 
and exceeding 6/(3 - vr3-) in (4.4b) (compare (4.1c,d)). The tables in [6] have 
somewhat higher accuracy, and indeed accuracy of degree exceeding 35 was 
regularly used to obtain adequate decimal precision for irrationals. 

5. THE DIAGONAL CURVES 

The diagonal manifolds D and D* define diagonal curves which shall be 
designated the same way. 

CURVE D 

From (3.7a) we substitute 

(5.la) X=x, Y-x, V=v, U=4v2 

into the system (2.5a-d). We find that the greatest common divisor of all four 
equations is the first diagonal curve D: 

(5.lb) F(v, x) = x2-4v2x + 6vx + 72x + 8v3 + 144v2 + 864v + 1728. 

This is a curve of genus zero. For example, it is quadratic in x with a discrim- 
inant having multiple roots, 

(5. l c) A = (2v + 3)2(v- 12)(v + 4). 

The curve may therefore be parametrized by making (v - 12) (v + 4) a perfect 
square: 

12 + 4t2 

8t3+ 72t2+ 216t + 216 
(5.le) x= V/(t) - t3-t2-t+ I 

We want a further parametrization of t to take care of the fact that for each 
x there are three values v, V', v". Therefore, if F(v, x) = 0 for a given 
(v, x), then for the same x the roots of a quadratic in (say) V will determine 
v' and v": 

(5.2a) 8V2 + V(8v + 144 - 4x) + (8v2 + 144v - 4vx + 864 + 6x) = O. 

In terms of the parametrization by t in (5. ld,e), the discriminant of the above 
equation is 

(5.2b) A' = [(t + 3)(7t +9)]2 3 - t 
(t -1)4 1 +t* 

We introduce new parameters to make (3 - t)/(1 + t) a perfect square: 

3 - s2 
(5.2c) t = v(s) = 1 ?2. 

So, corresponding to one of two roots ?s in (5.2c), v' is parametrized by 
(5.ld) and (5.2c) as 

(5.2d) v' = 54 ? 18s2 +?24s?+ 21 A _^I 
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This yields two values of t' of which the nonextraneous one is 

(5.2e) tl - 6s -3 = (s, 

where s' is found from (5.2c) to be 

(5.2f) s' = wj(s)= .2(+) 

With proper choice of conjugates, v represents V(zz, zz'), and v' represents 
V(z/r, z/r'). Thus, {v' -> v} amounts to multiplication of Z by T2 and of 
z by 2. (It is more convenient for notation to interchange the conjugates v 
and v'.) 

At last we achieve a parametrization in s for D with the transition (see 
(3.2a,b)) 

(5.2g) {v -> v'} ={z -> 2z} {s - c(s)}. 

CURVE D* 

From (3.7c) we substitute 

(5.3a) U=w*/v*, V=v*, X=x*, Y= 1/L 

into the set of equations (2.5a-d) and rationalize denominators. We then set 
v* = 0 and L = 0 (treating the equations projectively). The equation (2.5b) 
yields D*: 

(5.3b) F*(x*, w*) = w*2 - 4x*2w* + 414x*w* - 3456w* + 8x*3 

+ 1728x*2 + 124416x* + 2985984. 

The other modular equations are trivial under the substitution and limit in 
(5.3a). Equation (5.3b) is also of genus zero. It is a quadratic in w* with 
discriminant 

(5.3c) A* = 4x*(x* - 128)(2x* - 8 1)2. 

As before, we parametrize x*(x* - 128) into a perfect square by 

(5.3d) x*= 0 (t) = 128 
1 t*2 

(5.3e) W=* *(t*) = 1728t*3 + 8640t*2 + 14400t*+ 8000 

For any root (x*, w*), there are two other roots x*' and x*" which satisfy 
a quadratic in (say) X, 

8X2 + X(1728 - 4w* + 8x*) 
(5.4a) + (124416 + 414w* - 4w*x* + 1728x* + 8x*2) = O. 

In terms of the parametrization, the determinant becomes 

(5.4b) A*= 32(3t* + 5)2(63t* + 65)2 
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The new parameter for t* is 

(5.4c) t* = U*(s*) = 2s*2 _ 1. 

So, corresponding to one of the two roots +s* in (5.4c), x*' is parametrized 
by (5.3d) and (5.4c) as 

(5.4d) = 4(3s* + 1)4 

(s* - 1)2s*(s* + 1) - (t*I) 

This yields two values of t*' of which the nonextraneous one is 

t1 7s *2?105o*1- 

(5.4e) 
= 

(3s? + 1)2 *(s) 

where s*' is found from (5.4c) to be 

(5.4f) 5*' = ,*(5*) = 8s(s + 1) (s*) 3s*+ 1 
Likewise, in analogy with (5.2g), with a suitable relabeling of conjugates, we 

achieve a parametrization in s* for D* with the transitions (see (3.3ab)) 

(5.4g) {x* -> x*} ={z -> 2z} _ {s ) W(s*)}. 

Incidentally, it is a classic result [8] that w*(z) of (3.3a) is j(z), so the modular 
equation can be derived by eliminating x* from the pair: 

(5.5) F*(x*, j(z)) = F*(x*, j(2z)) = 0. 

6. SPECIFIC SINGULAR MODULI 

We are concerned with computing specific moduli which are useful to ring 
class field theory (see ?8). The term singular moduli is defined by extension 
of the concepts for classical modular functions as a value of a function in the 
modular function field for a quadratic surd argument over the real base field, 
provided the surd is (totally) imaginary. These are the following sequences for 
A= 1, 2, 3, 6 (and nEZ+): 

The data from Curve D are abbreviated as 

(6.l1 a) D: vn[A] = v(2 - 1 -A) = V(2n- - -21' -A) 
= V(zr2n-l A, /2n-I -A), 

(6. 1 b) D: xn[A] = x(2n v-A) = X(2n -A, -2n -A) 
= X (2n t-A I2n _---A). 

Omitting the " [A] " when the value is understood, we use the parametrizations 
of ?5, namely, 

(6. 1c) Vn =0(tn), Xn = ql(tn), 

(6.1d) tn = (sn) , Sn+1 = w((sn). 

The data for Curve D* are likewise abbreviated as 

(6.2a) D x*[A] = x*(2n l=-A) = X(2 -A, 2n1z -A) 
= X(- 2 n -A . 2n-1 f-A) 
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D*: w*[A] = w*(2n -A) = W(2n -A, 2 n-A) 
(6.2b) n (2 A In A = w(,r2nV-A != 12n V-=X). 

The parametrizations likewise are 

(6.2c) =* W$(*) (6.2c) x~~~n = (tn), wn = * 
(tn), 

(6.2d) t* = a*(s*) sn+ = c)(sn) 

In either case it is clear that so or s* determines the whole sequence. The 
problem is to start the process. The values of the sequences themselves, (6. 1a,b) 
and (6.2a,b), are of course well defined, as well as the uniformizing parameters 
t or t* . There could be an ambiguity in the choice of s and s*, which extends 
itself to the sequences sn and sn. We note, however, that the choice of (say) 
v' over v" in (5.2a) may be taken as the numerically larger value. This can 
be systematically done by taking sn and sn to be positive. Yet the choice is 
of no importance algebraically, since we are dealing with normal fields (see ?8). 
Each sequence will approach 1 monotonically from below or above. There 
were enough "recognizable" integers to guess some of the moduli. It was still 
desirable, however, to evaluate some of the surds in exact form from the decimal 
expansion from the PSOS algorithm [1] for verification. (This is sketched in 
?7.) 

We list the sequences of points (vn, xn) on D and (x*, w*) on D* (as 
defined by (6.lab) and (6.2ab)) at the top of each of Tables I-IV (for A = 
1, 2, 3, 6, respectively). These values came numerically from power series in 
[6] and were verified by the PSOS algorithm. 

In the context of singular moduli belonging to fixed points of quadratic trans- 
formations, we note that v = 12 and x* = 128 are roots of the discriminants 
A and A* in ?5. This is not surprising, since, e.g., if Z = (i, +i), two of 
the three conjugates in (2.6) are equivalent (namely Z/r and Zz) under the 
modular group. 

7. COMPUTATIONAL CONSIDERATIONS 

The evaluation of singular moduli was aided by symbolic computations in a 
number of ways. One direct method was to approximate singular moduli using 
expansions of modular functions, and then solve (2.5a-d) iteratively. If (say) 
x and y were known, then one of these four equations would have x, y, and 
u as variables, and another would have x, y, and v as variables. Clearing 
radicals if necessary, we could solve the resulting equations for u and v by 
factoring over appropriate number fields. Such factoring was accomplished by 
using an option of the MACSYMA factor command. Radical expressions were 
thus generated for the singular moduli, which could be matched with decimal 
approximations with some degree of confidence. The entire process could be re- 
peated, starting with the values obtained for u and v . Since radical expressions 
progressively increased in complexity, the entire procedure quickly became too 
involved. 

A few of the singular moduli were obtained by use of the LLL algorithm. The 
algorithm was written in MACSYMA, and runs of LLL in MACSYMA generally 
took less than seven minutes. In this algorithm's search for the polynomial 
of an algebraic number whose decimal approximation was known to a certain 
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accuracy, both the accuracy and a constant multiplier related to the algorithm 
were adjustable. It was never clear whether the constant multiplier was big 
enough, or the accuracy good enough, to have confidence in the output. If 
the output stabilized with increasing exactness in approximation and increasing 
constant multiplier, it was hoped that the actual answer had been reached. This 
turned out to be true for the few cases LLL was applied to. 

Another way to get radical expressions for the singular moduli was to use 
Bailey and Ferguson's partial sum of squares (PSOS) algorithm (see [1]). This 
algorithm can take a sufficiently accurate decimal approximation of a root of a 
polynomial with rational integer coefficients and output the polynomial. More- 
over, when the algorithm hits the relevant polynomial, certain estimates of error 
move down to "machine zero" in use at the time, thus pointing to the most likely 
polynomial among the several under consideration. 

Since the PSOS algorithm was coded up in MACSYMA, the fixed-point pre- 
cision ability of MACSYMA was used to adjust the machine zero in use. This 
turned out to be extremely helpful. Often, 30-decimal-digit accuracy was suffi- 
cient for PSOS to obtain the polynomial, though sometimes 50 decimal digits 
were used. Once 16-digit standard double precision was sufficient to obtain the 
polynomial in question. 

Unfortunately, such need for good approximations for singular moduli cre- 
ated some problems. Expansions of degree of accuracy up to 35 were used to 
try to get a sufficient number of correct digits. Fixed-point precision was set 
at 105 decimal digits in all calculations. The number of terms in an expan- 
sion of accuracy 35 was approximately 2180 terms for functions in H+ and 
took so much time that the MACSYMA time counter became negative. The 
time needed for such a run was estimated at 36 hours. It was necessary to 
make a table of coefficient values, which reduced computation time for num- 
bers corresponding to points in H+ to about 1.5 hours. To check accuracy, 
some numbers were calculated at degree of accuracy 21 or 29 first, to see if the 
decimal approximations were converging. Sometimes calculations were done at 
points equivalent under modular transformations. This raised the question of 
regions of good convergence for Q, R expansions of modular forms, though it 
gave great confidence to the extent of agreement with estimation at the original 
point. Also, sometimes trivial extraneous roots such as 0 or 1 showed up with 
the polynomial for the singular moduli. This may have been due to setting the 
highest degree possible for the output polynomial of the PSOS algorithm higher 
than was actually necessary. PSOS runs generally took under 15 minutes, but 
sometimes there was not enough accuracy to obtain the answer. 

Parenthetically, we might expect that the evaluation of singular moduli to- 
gether with their conjugates could suffice to determine exact equations and exact 
radicals (as in the classical case over Q). Actually, the situation is slightly dif- 
ferent here, since in theory the equations are over Q(v'3), so that recourse to 
a PSOS program may be theoretically unavoidable. 

8. THE HECKE-WEBER METHOD 

The original mission of Hecke's dissertation [91 was presumably to create an 
analogue with Hilbert modular functions for the class field theory of (classical) 
modular functions in one variable. The purpose was not fully achieved but 
served as the basis of some parallel theories (see [3] and [14]). 
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We consider the Hecke generalization of Weber's method in a limited context 
of a real quadratic field 

(8.1a) k = Q(V\A7), MEZ+, 

where k is of class number unity. Within the (symmetric) Hilbert modular 
function field Fk we consider only the modular functions generated by modular 
forms whose Fourier series have coefficients in k. The singular moduli are val- 
ues of these modular functions whose arguments are totally complex quadratic 
surds over k. The purpose is to use some of these moduli to generate ring class 
fields . 

The ring class fields have an existence independent of Hilbert modular func- 
tions. We consider a quadratic form over Ok , the ring of integers of k, written 
here as (say) 

(8.1b) ?(D 6= 2 + A j2, ,1E Ok. 

Here, A E Ok is a constant with the property that it is totally positive and 
A/'T is a unit of k. (Thus, without any difficulty, any number represented by 

D has a conjugate which is also so represented.) We restrict the representations 
to quadratic primes. Let p (= Tu7') be a prime which factors into totally positive 
factors in k (as shown). Then the ring class field RCF(0) is defined by the 
property that for some number X of norm p 

(8.1c) {p splits completely in RCF(1)} _ { t = I(D, j), E, e Ok} 

(We of course omit a finite set of primes such as discriminantal divisors.) The 
restrictions on A may seem cumbersome but they are convenient and in some 
sense seem necessary (based on unpublished computations). From the general 
theory [3], RCF(D) is abelian over ko, the splitting field of ID over k. This 
is 

(8. ld) ko = k( -A) 

(clearly the same for A as for A'). Indeed, by the symmetry of the form, the 
ring class field is normal over Q, so that we are dealing with the "self-dual" 
case (see [2, 12, 14]). 

We now define SMF(D), the singular moduli field for 1, as 

(8.1e) SMF(0) = ko(Ul(+ -A, + /-A), U2(? -A, +-A), .), 

where Ur are the generating functions of Fk and the signs accord with the 
configuration of half-planes. 

From Weber's model (with Q instead of k) we might expect that RCF(D) 
- SMF(D), even when 'D is not a form with fundamental discriminant. In 
Hecke's extension of the theory this is almost the case: 

(8.2a) SMF(D) C RCF(D) 

(which implies that SMF(D) is abelian over ko, hence normal over Q). In a 
sense, the two fields are not so far apart: 

(8.2b) [RCF(o): SMF(?)] ? const, 
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with fixed constant for each k if the number of distinct primes dividing the 
discriminant of ID is bounded. There seems to be much numerical evidence 
for this type of bound (see [3, 5]). 

9. RING CLASS FIELD THEORY (SINGULAR MODULI) 

We now ask the typical question of ring class field theory. In which field 
(RCF) does the prime p have to split completely in order that its totally 
positive prime factor X (or 7r') be representable as each of the following: 

(9.la) A = 1: Dm[l] = 42 + 12, 2mjNNfj, 

(9.lb) A= 2: Dm[2] = (2 + 2p,2, 2m-1lN, 

(9.lc) A = 3: Dm[3] = 42 + 3 2, 2mjNNfj, 

(9.ld) A = 6: (Dm[6] = <2 + 6 12 2m`1lNl. 

Here, m > 0. We search for singular moduli from which to construct the 
RCF. 

To make the problem appear more "conventional", we might rewrite 

(9.2a) Dm[I ]: 7f = 42 + 2m 2 

(9.2b) (Dm[2] X = <2 + 2,2m-2 2 

(9.2c) {m[3I: 7 = {2 
+ 

32m1 
2 

(9.2d) (Dm[6]: 7 = <2 + 6z2m-2. 2 

The cases A = 1 and A = 2 have intricate interrelations (since e is a 
totally positive nonsquare unit). Thus, in the sense of improper equivalence 
(GL2(0k)), 

<2 + 2m, 2 even m 
(9.3a) A=l: 1Dm[1] f2 + 2mr,2 odde m, 

l<2 + 2mc 2 oddm 
(9.3b) A = 2: (Dm[2] = <2 + 2m,,2 even m. 

(Similar relations exist between the cases A = 3 and A = 6.) 
To identify the RCF(0m), we must initialize with RCF(D 1) . We start with 

the splitting fields of (Ii [A]. We indicate with each the values of p which split 
over each field. 

(9.4a) A = 1, 3: ko = Q(V, i) ?p 1 mod 12, 

(9.4b) A = 2, 6: ko = Q(vi3, -)X2 p 1, I Imod 24. 

Since Q(v3, i) has class number unity, the splitting primes (9.4a) have prin- 
cipal factors, so that 

(9.4c) RCF(d11[1]) = Q(V4, i). 
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Now Q(v'i3, /-2) has class number two, but the primes which split into prin- 
cipal factors are the subset of (9.4b), 

(9.4d) p 1_ mod 24. 

Then an elementary manipulation yields the result 

(9.4e) RCF((1[2]) = Q(v'3, v?, i). 

The cases A = 3 and A = 6 run along parallel lines, with the new adjunction 
3 1!4/X/2 (which occurs in a singular moduli field for A = 3 but not A = 6 ). 
This is balanced by the fact that there is an as yet unknown radical required to 
distinguish the two forms in (9.2c) for A = 3. 

If we examine the sequences in ?6, we see that these are by definition the 
singular moduli fields: 

(9.5a) 
K,[A] 

= Kn = ko(vn, x*) = 
ko(x,, w*) = ko(tn, tn) = 

ko(s,_1 ,s- ) 

Now the " new" irrationality is determined by (snI , Sn*-), but some of the 
early values may already be in ko. We can, however, recognize as a stable state 

(9.5b) JKn+11KnJ = 4, n > const. 

An intermediate field Kn* [A] (= Kn* ) will be of considerable value later on, 

(9.5c) Kn C Kn*= Kn(sns*) c Kn+1 = Kn(sn, Sn), 

(9.5d) [Kn+1 Kn*] = [Kn* : Kn] = 2, n > const. 

10. RING CLASS FIELD THEORY (VERIFICATION) 

To identify the singular moduli fields is just a matter of comparison of equa- 
tions of ?6 with (9.5a). Generally, the singular moduli field SMF((Dm) is only a 
subfield of RCF(qDm). Also the necessary adjunction to SMF to make RCF 
comes from some later SMF((M) where M > m (except when A = 6). 

A supplementary computation of the "BASIC" type is required to identify 
the RCF((Dm[A]). We use the elementary principle that if two fields satisfy 
K D L, then to show K = L we need only compare degrees. We therefore (by 
(8.2b)) hunt for the RCF(cDnm[A]) among the SMF(cDM[A]) for M > m. This 
is done by representing Z by the forms (9.1 a-d) and seeing the exact value of 
m determined by each representation. At the same time we see which values of 
sn and s* are "rational" modulo p, i.e., which values have quadratic residues 
in the radicand as square roots are taken in (5.2f) and (5.4f). When Sn-i or 
S* fails to be a square root modulo p, then by (9.5a), Kn[A] is not a ring 
class field, but we test the residuacity of sn -I Sn*_ l to verify Kn*- l [A] , by (9.5c). 
The results for A = 1, 2, 3, 6 are shown in the Tables I-IV. On the basis of 
p up to 3000, we get enough cases to identify the RCF(cDm[A]). 

As a check on the accuracy, the degree of the ring class field is checked against 
the "density of representations". The ring class field always doubles in degree 
when we go from (Dm to Dm+I (even if the singular moduli do not always 
create higher fields). The singular moduli fields on the other hand, generally 
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increase in degree by a factor of four as m -> m + 2, but they can be identified 
with ring class fields by degree. 

11. CONCLUDING REMARKS 

The fact that we are on a curve within the surface (2.5a-d) makes a one- 
dimensional theory possible, analogously with the earlier work on Q(VK2), see 
[5]. We omit the details for now, but we note that the Klein and Hecke modular 
functions produce the results 

(ll1.la) Kn [ Q (i , -3,j (2ni j(2 3=)), 

(1 1. lb) Kn [2] =Q(-2, , j(2 ),j(2 -6)). 

The role of curves on modular manifolds (defined by the modular function 
fields) has been a fruitful topic of exploration (see [7, 10]). Certainly, the 
numerical properties of the curves used here should indicate the importance 
of a more algebraic approach to justify the plethora of useful numerical data 
available even now, particularly with MACSYMA. 
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